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ABSTRACT

The applications of artificial intelligence are becoming more and
more prevalent in everyday life. Although many AI systems
can operate autonomously, their goal is often assisting humans.
Knowledge from the AI system must somehow be perceptualized.
Towards this goal, we present a case-study in the application of
data-driven non-speech audio for melanoma diagnosis. A physi-
cian photographs a suspicious skin lesion, triggering a sonification
of the system’s penultimate classification layer. We iterated on
sonification strategies and coalesced around designs representing
three general approaches. We tested each in a group of novice
listeners (n=7) for mean sensitivity, specificity, and learning ef-
fects. The mean accuracy was greatest for a simple model, but a
trained dermatologist preferred a perceptually compressed model
of the full classification layer. We discovered that training the AI
on sonifications from this model improved accuracy further. We
argue for perceptual compression as a general technique and for a
comprehensible number of simultaneous streams.

1. INTRODUCTION

Artificial Intelligence (AI) algorithms are becoming an increas-
ingly important part of interacting with computers [1]. Today, al-
most every major content provider uses machine learning, deep
learning, or artificial intelligence more generally to produce their
final product.

In spite of the complexity and sophistication that is required to
produce a well-functioning AI system, often the information needs
to be displayed to a human recipient. In these contexts, an impor-
tant layer of the AI system is the perceptualization of the machine
knowledge. This perceptualization can take many sensory, linguis-
tic, or cognitive forms, and the best way to communicate will de-
pend upon human-factors such as the context, expertise, and task
goals.

In this paper, we describe a context where an AI system as-
sists a human in the diagnosis of skin cancer from photographs of
suspicious skin areas (lesions). A doctor takes a photograph of a
suspicious area on their patient’s skin, triggering an analysis phase
by the AI system. Once the image has been processed, it gener-
ates a sonification that represents what has been sensed/classified
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in the image—good and bad. The doctor then uses this sound, in
addition to other factors such as the patient’s medical history, to
determine if further tests (biopsy) or treatment is indicated.

We describe our design process for creating sounds for this
AI system, which included three sonification designs and a user
study with novice listeners. After describing the context around
the work, we present the three designs in the order that they were
created. We describe the study that we administered and our re-
sults, then finish with general design guidelines for working with
AI systems that may prove useful in similar contexts.

2. BACKGROUND CONTEXT

Listening has formed a vital component of medical practice. In-
deed, auscultation has been considered the first “imaging” tech-
nology [2], and the stethoscope is still routinely used by general
practitioners. Doctors are trained listeners.

We worked with an algorithm that has been developed to iden-
tify melanomas from photos of skin lesions [3]. The algorithm was
a deep learning convolutional neural network, and was trained on
thousands of images. The algorithm was designed to produce a
binary classification output: benign or malignant.

A simple auditory display strategy would be to read out a “be-
nign” or “malignant” diagnosis for a given input image. How-
ever, we sought to use a more sophisticated sonification to pro-
vide additional information and context. We reasoned that if the
sonification targeted the more subtle information behind the course
benign/malignant classification, a listener might be able to under-
stand more of the nuance behind the given classification. For ex-
ample, each image might produce a unique aural signature that
helps convey why the algorithm decided on its final classification.

For the purposes of design, we targeted the penultimate layer
in the AI system. While the final layer of the network had a binary
classification, the layer before that had 1024 nodes, each with an
associated weight and image-dependent activation. Although the
full system contained hundreds of layers and loops, our choice to
use the penultimate layer came from the desire to have the most
direct and information rich layer available. This layer also made it
easy to use the final classification output.

3. DESIGN PROCESS

In the process of designing the sonification algorithm, we went
through several design iterations, which manifested in three dis-
tinct design strategies. The three designs all used the penultimate
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layer, but differed in their underlying goal, sound design and map-
ping strategy.

We made a graphical user interface (GUI) to assist our explo-
ration of the dataset, sampling of the sonification strategies, and
our evaluation (See Fig. 1). In the “Training Mode,” the GUI dis-
plays the image of the suspicious skin region in the upper left, the
result of the classification in the upper right, and a graph repre-
senting the activations of “benign” and “malignant” nodes on the
bottom. For any image, the user could listen to any of the three
sonification designs by pressing a button, and control the playback
speed using a knob. In the evaluation mode, the image was hidden,
and the user diagnosed based only on what they heard.

4. DESIGN #1

The first sonification system used a rapid parameter mapping ap-
proach (i.e. granular synthesis) to directly sonify the 1024 nodes
in the penultimate layer. Because the data were rendered in an
unprocessed format, we nicknamed this design “Raw.”

In this approach, the nodes were first sorted by descriptive
power. Using all of the images in the dataset, we quantified each
node based upon their descriptive power for either benign or ma-
lignant diagnosis. Once quantified they were sorted such that the
nodes that were most positively associated with the benign images
were at the beginning, and the nodes that were most positively
associated with the malignant images were at the end. With this
ordering in place, each node was mapped to a note whose loud-
ness and duration was determined by the strength of that node for
a given image. For example, if a given node had a strength of 1
for a given image, the note assigned to that node would play at full
volume for 100ms. If the same node were to have a strength of 0
for a different image, it would have no volume and would have no
duration.

In order for each node to be played with most clarity, each
node was associated with a unique frequency. These frequen-
cies were evenly distributed across the frequency spectrum accord-
ing to a logarithmic mapping (i.e., mostly linear in musical note
space). This choice allowed each octave to have an equal number
of pitches within that octave.

In order to play all of the notes for a given image so that they
might be heard, the notes were spaced out in time such that they
were triggered in short succession. The amount of time between
note onsets was increased in order to produce more clarity of notes,
but the amount of time was decreased to limit the total amount of
time that a note would ring for.

The notes were played in ascending order from low pitches
(generally mapped to benign lesions) to high pitches (malignant
lesions), creating a total upward glissando sound as each image
played through all of its nodes.

4.1. Analysis

All together, the approach was successful in producing sounds that
were different for each image. However, the overall sound was
quite chromatic and dissonant due to the closely spaced notes in
both frequency space and time.

Furthermore, in order to determine whether a given sound cor-
responded to a benign or malignant image, it was necessary to do
a type of aural weight analysis, where the total amount of low fre-
quency volume was weighed against the total amount of high fre-
quency volume. This process was necessary because each image

had a combination of low and high notes that reflected the 1024
nodes of the penultimate layer. Rapidly playing through all nodes
did not make the perceptual identification easier. If anything, the
resulting effect was to render the choice more difficult. For exam-
ple, by hearing a mixture of high and low notes (a true reflection
of the layer), a listener might be less confident when making a de-
cision regarding whether the image was benign or malignant. By
comparison to a simple mathematical number that could be calcu-
lated from every image, this approach ultimately seemed to be less
useful.

5. DESIGN #2

The second design reflected a desire to make the ultimate deci-
sion of benign or malignant more clearly audible, decreasing the
amount of learning and time required to make accurate aural di-
agnosis. To accomplish this goal, we reasoned that the sound of
a malignant melanoma should be very clearly different from a be-
nign lesion, and should have sonic qualities of loudness, rough-
ness, dissonance, fear, or in general, “badness.” This would con-
trast to a benign lesion, which would sound more easy-going, clear,
consonant and quiet. Furthermore, the goodness or badness of the
sound should correspond to the actual certainty that a given lesion
would be benign or malignant. Because this design was designed
to make the benign or malignant classification clear, we nicknamed
it “Type.”

With these design goals in place, we drew upon auditory cues
from the music emotion literature [4], specifically emotion sonifi-
cation [5]. In our strategy, a sonic space was modeled that would
be controlled by a single “goodness”-to-“badness” dimension that
was calculated by summing all of the activations and weights of the
first design strategy and applying a scaling based upon the proba-
bility of correct diagnosis. This number would be either positive
(benign), or negative (malignant), and magnitude would increase
linearly with confidence. Because this one dimension controlled
many sound parameters, this design was a one-to-many mapping
strategy [6].

The timbre used as the basis of the sonification was created
using modal synthesis with fixed resonant modes and decay times.
In this design, the sound of a benign lesion was a simple timbre
that would strike the first note, wait a few moments, and then play
a note a perfect fifth above it. The decay time was controlled by the
“goodness” of the classification such that a long decay time meant
that a lesion was good/benign, and a short decay time indicated
bad/malignant. Additionally, the amount of time in between notes
was also controlled by the same dimension. The amount of time in
between the two strikes was a direct indication of the confidence
of being benign. For example, a lesion that was classified with
confidence as being benign may have 1.5 seconds of gap between
the two sounds, whereas a lesion classified as benign, but with less
confidence may have 0.3 seconds of gap between the two notes.
Perceptually, benign lesions sounded more “relaxed.”

The sound of a lesion that was classified as malignant would
sound “bad” using additional auditory cues. Continuing from the
benign sound model, the decay time of each of the two strikes
would be short, and the time in between the two strikes would
be short as well. However, the two strikes were allowed to echo
through the sound model, while simultaneously being frequency
and amplitude modulated. These modulations, combined with the
echo, created a sound that was aggressive, having many attacks in
short succession, general roughness, and frequency instability. As
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Figure 1: The GUI used for interactively exploring the dataset and sampling the three sonification designs. In the training mode, the
sonification strategies are paired with an image of the skin region and AI-output. In the evaluation mode, the user makes decisions based
upon the sonification alone.

with the “good” sounds, the cues used for “badness” increased in
magnitude when lesions were classified as being more malignant,
and decreased in magnitude when lesions were classified as being
more benign.

5.1. Analysis

Having created the sonification model that represented a continu-
ous “goodness”-to-“badness” scale, we felt that the sounds them-
selves were able to communicate these high-level constructs. We
reasoned that the difference would be easy to explain to an un-
trained listener. Furthermore, the emotion-laden auditory cues
would contribute to a more “embodied” [7] or tangible sonic char-
acter compared to a spoken classification.

However, the design also had weaknesses. By relying upon a
single continuous number for sonification, the sound was not able
to provide as much detail as the first design. The nuances in the
soundscape in this design were not due to subtle differences in the
data, but were instead completely determined by the magnitude of
a single number. For example, if the user did not like the sound, or
didn’t want to use it, a simple real number could replace the sound
without any information loss. Thus, the sonification in this case
might be able to communicate clearly the goodness or badness, but
perhaps not provide much (if any) additional unseen information.

6. DESIGN #3

After producing the first two designs, we sought a third design
that could capture what we already learned from the first two and
produce something in between. The third design would represent
some of the subtleties of the underlying 1024 weights, but include

clear acoustic cues that would differentiate benign and malignant
lesions. Such a design would offer a mid-way point between the
first two designs.

The initial idea for the third design came through a brainstorm-
ing session with the team members that made the deep learning
classifier. We decided to look into ways to intelligently reduce di-
mensionality down from 1024, without dropping all the way back
down to the final binary classification layer. In the end, we used a
clustering approach, where a given lesion would be described by
its distance to N different cluster centers. By analyzing all of the
ground truth data using this method, we determined how descrip-
tive each cluster was for being either malignant or benign in its
diagnosis. For example, if a cluster center reliably predicted a ma-
lignant diagnosis with 95% accuracy, we reasoned that being close
to this cluster center should have a very bad sound. Similarly, if
a different cluster center had reliably predicted benign diagnosis
with a 95% accuracy, it should contribute a sound that was peace-
ful and relaxing. Because of the clustering algorithm we used as
part of this design, we nicknamed it “kMeans.”

Using this approach, we decided to use fewer than 20 cluster
centers, and ordered them according to their ability to predict a be-
nign diagnosis. Each of these were then assigned to a pitch, with
each pitch being a fourth above the previous pitch in ascending or-
der. By separating the notes in ascending perfect fourths, we were
assured that each cluster center would have a unique pitch, and
that the overall tone produced would not be associated with any
familiar chord (which would include combinations of thirds). Fur-
thermore, by not stacking the notes on 5ths, the overall range from
lowest to highest note was smaller and more compact in pitch-
space.

For any particular lesion, the underlying data would be the
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distance to all cluster centers. However, because a large distance
meant that the lesion was not well described by that cluster center,
we inverted that value to produce a new parameter: “closeness.”
Closeness became the variable being sonified, and was mapped to
the duration of the note. If a lesion’s image was close to any of the
cluster centers, the sound of those cluster centers would play for a
relatively long time (i.e. up to 2s), compared to clusters that were
far.

Because the clusters were ordered according to their ability
to predict benign images and stacked in ascending order from a
base note, this meant that low notes were (again) associated with
benign images and high notes were associated with malignant im-
ages. However, after listening to these, we felt that there should be
additional cues for cluster centers that were malignant, that would
make them not only higher in pitch but also clearly differentiated in
timbre. Furthermore, we thought that it would be useful for those
notes to also sound more urgent or salient. Therefore, we used
a different waveform to frequency modulate the malignant cluster
center sounds. The depth of the modulation was fixed relative to
the center frequency, but the speed of modulation was greater for
cluster centers that were more malignant.

6.1. Analysis

After producing the third design, we felt that we had produced the
strongest design yet. By wrapping the design in a GUI, we were
able to distribute it to a physician with experience in diagnosis.
His feedback was that the sound was able to highlight very minute
features in the lesion image. What he was hearing was probably
the cluster centers that were not as strongly predictive, and there-
fore included a slower frequency modulation that might appear in
a context of many sounding benign cluster centroids.

7. DEMONSTRATION VIDEOS

We made three demo videos (one for each design) and posted them
online.123 In each video, a listener uses the GUI (Fig. 1) in Train-
ing Mode to hear examples of images from different classification
zones. For example, in the video ”Design 2 - Type”, the user be-
gins by sampling images that have been classified “Malignant 3”
(very likely malignant). At 0:42, the user switches to sampling
images classified as “Benign 3” (very benign). At 1:04, the user
switches to samples classified as “Borderline 0” (equally probable
benign or malignant). At 1:28, the user switches to images clas-
sified as “Malignant 1” (possibly malignant). Finally at 1:45, the
user switches to images classified as “Benign 1” (possibly benign).
The corresponding sonification accompanies each new image.

8. STUDY

8.1. Study Purpose & Overview

Given that one physician can become very effective in utilizing the
sonification tools, the question arises as to how much practice or
training is required for a listener to become proficient in utilizing
the sonification output for diagnostic purposes, and whether there
is a difference in learnability for the three different sonification

1[Design #1 Example Video:] https://youtu.be/McBoGHIy7qg
2[Design #2 Example Video:] https://youtu.be/ay3UpoemiZs
3[Design #3 Example Video:] https://youtu.be/4ZZKx9FhYBk

approaches. In order to study the learnability of the sonifications,
we conducted a training study.

We performed a small controlled (“lab-like”) study, to assess
the effectiveness and learnability of the sonifications developed in
this project. This was a small, initial study focused on the sonifi-
cation specifically, and not on the entire diagnostic apparatus.

Listeners (not medically trained, but otherwise representative
of future medical listeners) were trained to associate sonification
sounds to labels (e.g., very bad, neutral, very good), then tested to
assess the effectiveness of the training. They also provided subjec-
tive feedback about the sonifications.

We were looking at how intuitively the sounds represent the
concepts, and how easily the listeners could learn to associate the
sounds with the concepts.

Since we developed three novel sonification strategies, all dif-
ferent from each other, the listeners interacted with each of the
sonification approaches, in random order. This within-subjects
study design allowed us to compare the sonification designs for
intuitiveness and training ease. We expected the three sonification
approaches to differ not only in how quickly they could be learned,
but the way performance evolved with practice.

8.2. Participants

Participants included seven adults (3 male, 4 female), aged 25-
35; all had completed a 4-year college degree. These participants
were not physicians, but were meant to be somewhat representa-
tive of medical students or (young) physicians in many respects
(educated, other than medical training).

These participants were recruited in a major US city using
a “friends and family” approach. All completed confidentiality
agreements, but in any case they did not see any dermatology im-
ages, nor were they told anything about the ultimate purpose of the
project. Participants were paid $50 for their participation.

8.3. Apparatus

The study was conducted in a commercial office space, generally
on weekends and after normal business hours, to maintain confi-
dentiality and ensure a quiet testing environment. Participants in-
teracted with a laptop computer connected to an external monitor
and external mouse and keyboard. Participants used high fidelity
headphones. A bespoke software program written in SuperCol-
lider provided a GUI through which the sounds could be played
and responses recorded. Along with the sound controls, the soft-
ware presented a word very bad, bad, neutral, good, very good, or
a number -3, -2, -1, 0, +1, +2, +3.

8.4. Proceedure

Participants completed a brief demographics form, and executed a
confidentiality / non-disclosure agreement. Within one encounter,
they completed three sessions, with each session consisting of
three blocks of trials. Each block of trials consisted of 21 train-
ing trials, followed by 21 testing trials. During the training phase
of a block, participants saw the number (or word) and listened
to the sound. During the testing phase of a block, participants
heard the sound and then selected a number (or word) that they
felt represented the sounds “goodness. Data about the responses
were recorded for each trial, in every block and session; along
with how many times a sound was listened to and the time spent at
each stage of each trial.
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8.5. Results

8.5.1. Sensitivity & Specificity

Sensitivity, here, relates to the number of correctly identified ma-
lignant lesions. It is also known as the hit rate, and loosely cor-
responds to the notion of accuracy in the classification task. In
the case of diagnosing melanomas, it is important to catch all the
malignant lesions. On the other side of the same coin, specificity
refers to how often (or how rarely) a benign lesion is correctly
classified as benign. Thus, it is also known as the correct rejec-
tion rate, and is important since a mis-classification of a benign
lesion as malignant can lead to unnecessary tests and stress to the
patient. It is clearly desirable, whenever possible, to have both a
high sensitivity, and a high specificity. However, in practical appli-
cations, it is often necessary to prioritize one or the other of these
performance metrics.

In this study, the sensitivity was calculated for each partici-
pant, for each sound design, and for each subsection (i.e., each
block of trials). Then, the mean sensitivity was calculated across
participants (i.e., collapsing on participant), for each subsection
and each sonification design. Similarly, specificity was calculated
for each participant for each subsection and for each sonification
design. Then, mean specificity was calculated for each subsection
for each sound design.

The results for mean sensitivity are presented in Figure 2, and
the results for the mean specificity is displayed in Figure 3.

Figure 2: The mean sensitivity of each design accross the three
subsections of the study.

8.5.2. Analysis

Within-subjects analyses of the comparisons between sessions was
one of the primary measures. For our purposes we looked mostly
for evidence in support of the sonification intuitiveness, but did not
need statistically reliable measures.

Based upon the mean values across participants, we found that
the Type sonification had the overall highest sensitivity, and the
Raw design had the lowest. The kMeans and Type designs both
had comparable specificity, but the Raw design was much lower.

Figure 3: The mean specificity of each design accross the three
subsections of the study.

Based upon the mean values across subsections, we found
some effects of learning in the Raw design, but not in the Type
and kMeans designs. For both Sensitivity and Specificity, the
kMeans approach became more difficult with time. For the Type
approach, sensitivity decreased somewhat after each subsection,
but the specificity increased.

8.5.3. Additional Data

In addition to the performance data described above, we collected
data about preferences via a post-task questionnaire. Responses
for numerical questions were generally provided via a Lickert-
style scale, on which 1=Completely DISAGREE; and 7=Com-
pletely AGREE.

In general, the small sample size (n=7) means that we are not
really able to make statistically reliable conclusions about the pref-
erences data. We can, however, see that in this sample of partici-
pants, there was preference for (and dislike for) each of the sound
designs. There was no unanimous favorite. There was, however,
less support for sound design #1, especially when it came to asking
how easy it was to interpret and understand.

9. GENERAL DISCUSSION

9.1. Study

Our study was largely confirmatory of our design intuitions.
Namely, the Raw approach was less useful than the Type or
kMeans designs, and the Type approach provided the greatest over-
all accuracy for novice listeners. Although novices performed well
with the kMeans approach initially, their performance decreased
with time. This change may be due to them hearing more detail
and nuance as they learned. A future study with expert dermatolo-
gists and images of the lesions, might produce different results.
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9.2. Expert Feedback

In addition to the results from the study, our design process in-
cluded almost daily interactions with a trained dermatologist. This
dermatologist was invested in sonification for the domain, and
would explore the dataset using the GUI after each design itera-
tion, offering his insights and support as a specialist. From the
dermatologist’s experience, we learned that the third design was
very “precise,” often revealing nuances that were also quite subtle
in the photograph.

9.3. Sonification as Layer

One of the unexpected outcomes of our work was finding that
when we trained the classifier on audio from the third design, ac-
curacy was increased relative to the AI algorithm alone [3]. The
process of perceptualizing the information had in a sense formed
another compression layer, which removed noise from the data and
increased signal. In the future, we think that designing the outputs
of an AI algorithm to be interpretable by a perceptual system (such
as the auditory system), might be an effective strategy for boosting
performance in an AI system.

9.4. Comprehension Guidelines

In our work, we explored different ways of perceptualizing infor-
mation in the penultimate layer of a AI algorithm. Based upon our
experience, we recommend the approach used in our third design.
In this design, we applied compression in the form of a cluster-
ing algorithm prior to sonification. Although a mathematical algo-
rithm might not be limited by the number of nodes or dimensions it
can utilize, the same is not true for the human perceptual system.
In our view, a successful compression algorithm will reduce the
number of simultaneous streams to a number that will maximize
listening comprehension [8]. For example, when sonifying knowl-
edge in a complex AI system, first reduce the information space to
a subset of 10-15 dimensions, of which only 2-5 will be prominent
for any given input.
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