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Background: Skin cancer (SC), especiallymelanoma, is a growing public health burden. Experimental studies have
indicated a potential diagnostic role for deep learning (DL) algorithms in identifying SC at varying sensitivities.
Previously, it was demonstrated that diagnostics by dermoscopy are improved by applying an additional
sonification (data to sound waves conversion) layer on DL algorithms. The aim of the study was to determine
the impact of image quality on accuracy of diagnosis by sonification employing a rudimentary skin magnifier
with polarized light (SMP).
Methods: Dermoscopy images acquired by SMP were processed by a first deep learning algorithm and sonified.
Audio output was further analyzed by a different secondary DL. Study criteria outcomes of SMP were specificity
and sensitivity, which were further processed by a F2-score, i.e. applying a twice extra weight to sensitivity over
positive predictive values.
Findings: Patients (n=73) fulfilling inclusion criteria were referred to biopsy. SMP analysis metrics resulted in a
receiver operator characteristic curveAUC's of 0.814 (95%CI, 0.798–0.831). SMP achieved a F2-score sensitivity of
91.7%, specificity of 41.8% andpositive predictive value of 57.3%.Diagnosing the same set of patients' lesions by an
advanced dermoscope resulted in a F2-score sensitivity of 89.5%, specificity of 57.8% and a positive predictive
value of 59.9% (P=NS).
Interpretation: DL processing of dermoscopic images followed by sonification results in an accurate diagnostic
output for SMP, implying that the quality of the dermoscope is not the major factor influencing DL diagnosis of
skin cancer. Present system might assist all healthcare providers as a feasible computer-assisted detection sys-
tem.
Fund: Bostel Technologies.
Trial Registration clinicaltrials.gov Identifier: NCT03362138
©2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

About 1 million non-melanoma skin cancers and 288,000malignant
melanoma (MM) cancers occurred globally in 2018 [1]. Due to an aging
population and limited health care resources, accurate diagnosis and
feasibility of detection are a requisite for a generalized skin cancer pre-
vention policy. The impact of immunotherapies on survival and cost fur-
ther strain the already overburden healthcare system and raise the
question of financial sustainability [2]. Skin cancer and especially MM
early detection is challenging for both dermatologists and general prac-
titioners. Dermoscopy is considered the standard of care [3], but in ob-
jective tests dermatologists achieve a limited diagnostic sensitivity of
40% MM detection [4] due to the complexity of visual inputs embedded
l Aviv 6209406, Israel.
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in a dermoscopy image [5]. General practitioners seem to benefit from
use of a dermoscopy course, while a figure of 51% correctly diagnosed
lesions calls for further improvements [6]. Likewise, specificity of diag-
nosis by dermatologists calls for a further improvement, as reflected
by a spectrum of 28:1 to 9:1 number of biopsies that need to be excised
in order to identify onemelanoma and a 3:1 ratio for overall skin cancer
[7,8].

Deep learning (DL) classifiers are a promising candidate for detec-
tion of skin cancer [9,10]. Nonetheless, laboratory studies reported a
clinical sensitivity from 29%–87% [ 11,12], a discrepancy which might
be attributed to the quality of the dataset input, therefore rendering
technology as experimental. Recently, a first prospective clinical obser-
vational study [13] reported on a two step approach, adding a second
layer of sonification (visual data turned into sounds) to a DL classifier
in order to improve accuracy of detection. This dual DL utilized an ad-
vanced dermoscope, a relatively expensive device, and a technique
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

Diagnosis of skin cancer aided by deep learning is pursued in last
years. Previously, a clinical prospective study published on Feb
2019 EBioMedicine indicated that sonification (data conversion
to sound) imposed on deep learning algorithms improves diagnos-
tic outcome. The clinical study utilized image capture by an ad-
vanced dermoscopic device. We searched in Pubmed and arXiv
for prospective clinical trials using the search terms of “artificial in-
telligence” or “deep learning” and “melanoma” or “skin cancer”with
addition of the term “prospective”. Search was conducted on Dec
15, 2017 and repeated on Mar 15, 2019 without any finding be-
yond the before mentioned article. There were no additional clini-
cal studies applying deep learning skin diagnostics on either
“sonification” or a “low-cost” dermoscope.

Added value of this study

To our knowledge, this is the first prospective observational study
employing an elementary skinmagnifier with polarized light to suc-
cessfully test and validate skin cancer diagnosis by sonification.
Data processed by a deep learning algorithmwas sonified and out-
put compared between a low-cost and advanced dermoscope. It is
demonstrated that sonification of data renders diagnostic accu-
racy of a low resolution dermoscope on par with a professional
dermoscope.

Implications of all the available evidence

Present technology improves accuracy output and might assist all
physicians to diagnose skin cancer. System advantages are cost
convenience of the device and bypass of dermoscopy-related ex-
perience factors, time constraints and physical inconvenience of
acquiring images. The conclusion that quality of a dermoscope is
not the major factor influencing deep learning diagnostics of skin
cancer implicates different pattern recognition between humans
andmachine learning. The study utilized teledermatology and con-
tributes to preventive medicine, potentially supporting present
budget oriented healthcare systems as a computer-assisted
diagnostics.

108 A. Dascalu, E.O. David / EBioMedicine 43 (2019) 107–113
highly dependent on physician experience [4], rendering it less suitable
for widespread primary care physicians use.

Consequently, the impact of image quality on accuracy of diagnosis
was further examined. It was decided to test a low priced device classi-
fied by its manufacturer as a skin magnifier with polarized light (SMP).
Images quality acquired by SMP preclude inmost cases a precise clinical
diagnosis due to haziness and lack of fine high level dermoscopy pat-
terns and diagnostic structures. Images were processed by DL algo-
rithms, sonified and diagnostic metrics were validated versus the
histopathology report.

2. Methods

2.1. Primary deep learning training and sonification

As previously described [13] a convolutional neural network archi-
tecture based on the Inception V2 network was utilized. Dermoscopic
images validated by biopsy reports were classified into eithermalignant
or benign and a feature representation was obtained. Publicly-available
datasets, such as the International Skin Imaging Collaboration (ISIC)
2017 dataset [14] were used for training to a total of 4361 advanced
dermoscope images and 800 non-dermoscopic regular photos. Data
augmentation, training and fine tuning were performed as mentioned
[13] and the weighted activations of all of the 1024 nodes in the penul-
timate layer of the DL classifier were sonified, i.e. representation of data
using non-speech [15] in order to generate sounds. A K-means cluster-
ing algorithm [16] was employed to cluster the activations into groups
of related observations. The K-means algorithm was initialized by ran-
domly choosing N data points without replacement to constitute the
initial cluster centers, where N is the number of clusters. In order to ad-
dress the sensitivity to initialization, K-means was run 100 times, each
with a different random starting point. The clustering solution with
the lowest error (i.e. the one that maximizes the likelihood of the
data) was chosen as the final model. Cluster centroids represented by
individual pitches and malignant “alert” sounds were mapped onto
loudness, timbre, and duration of a sonification, thus an audio signal
for each of the centroids of datawas derived, providing for an audio out-
put that acoustically differentiated the malignant from benign lesions
and conferring information about the image through a raw wave file
(Fig. 1).

2.2. Secondary deep learning algorithm

Raw sound files were derived for each dermoscopic image referred
to biopsy (n = 73 patients) by SMP (133 data files) alongside an ad-
vanced dermoscope (AD, 142 data files) and analyzed by a secondary
learning machine. For each image a sonification audio file was pro-
duced. In order to explore the diagnosis of skin cancer based on the
audio waves, a particular classifier dedicated to each acquiring device,
either SMP or AD, was trained against the ground truth diagnosis in
the database, using a 80% random single split of the samples (training
set). The remaining 20% of the set were held back and later used for
validation (test set). The classifier normalized the input (zero-mean
and divide by standard deviation), and dropout was used for regular-
ization. For the raw audio classifier each raw WAV file is single-
channel (mono) audio, produced via the sonification algorithm, with
sample rate of 44,100 Hz and a duration of 3 s, for a total of 132,300
data points per file. By averaging each 10 consecutive samples, the
input size was reduced to 13,230 values. A 1-dimensional CNN was
used, with input size 22,050, first convolutional layer with 32 filters
of size 1 × 5; max-pooling layer with size 10; second convolutional
layer with 64 filters; max-pooling layer with size 10; a fully connected
layer with 128 neurons; and output softmax layer with 2 neurons.
Performance of SMP and AD classifiers were quantified by the area
under the curve (AUC) of the receiver operating characteristic curve
(ROC).

2.3. Clinical study

An open, prospective, non-interventional observational study was
conducted at dermatology clinics at three sites by one dermatologist
(DA).The clinical trial was approved by the institutional review board
of Maccabi Healthcare, Israel (protocol Aq 16842/2017), clinicaltrials.
gov Identifier: NCT03362138. Enrollment occurred between 18th Dec
2017 and 31th Aug 2018. Inclusion criteria were: (i) age 18 years and
older, (ii) a suspected malignant lesion identified by a dermatologist
through dermoscopy resulting in clinical management of referral to bi-
opsy and (iii) patients' consent to participate in the study. Exclusion
criteria were (i) a non-intact skin, since touch dermoscopy on an ulcer-
ated skin cancer is unadvisable as it requires physical pressure in order
to assess a flat diagnostic surface, might be painful or encounter an in-
fected tissue, (ii) N15 hairs per dermoscopic field, (iii) performance of
anunsolicited biopsy by surgeon (shave), and (iv) lesion locationwithin
1 cmof the eye ormucosae surfaces. A total of 83 consecutive biopsy re-
ports were received, 7 patients were illegible by inclusion criteria and 3

http://clinicaltrials.gov
http://clinicaltrials.gov


Fig. 1. Flowchart of image processing. A dermoscopy image is acquired by a smartphone and conveyed to cloud computing. A deep learning classifier predicts primary findings which are
further processed by sonification. Final diagnosis is conferred to user as a malign or benign lesion diagnosis, i.e. excise or not indication.

Fig. 2. An image from an elementary dermoscope (2a) was compared to the advanced dermoscope version (2b). A Fast Fourier Transformation was applied on images (2c, b), white areas
were further thresholded (Fig. 2e, f) and area fractionwasmeasured. The advanced dermoscopepossesses higher spatial frequencies (p N .001) and therefore inputs amore detailed image.
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Table 1
Clinical study data.

Epidemiologic data and characteristics of lesions

Characteristics No. 73
Study population

Patients 73
Lesions 73
Total images

Age, mean (range) 50.3 ± 14.5 (18–87)
Sex

Male 38
Female 35

Race
Caucasian 100%

Anatomic site
Face 12
Trunk 47
Extremities 14

Histopathology diagnosis
Benign nevus 42
Skin cancer 31
Dysplastic nevus 16
Atypical spitz nevus 1
Melanoma 2
Basal cell carcinoma 6
Squamous cell carcinoma 6
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lesions regressed prior to biopsy (likely keratoacanthomas) rendering
73 eligible subjects by inclusion criteria.

Patients were enrolled serially at each of the study sites on the basis
of casual visits and need to biopsy. Subsequent to a clinical decision to
biopsy, patient was first referred to a surgeon and then asked to partic-
ipate in the study by signing the consent form. A rudimentary SMP
(DermLite HUD, 3 Gen, TX, US) and an advanced dermoscope, AD
(DL4, 3 Gen, TX, US) attached to a smartphone (iPhone 6) were used
used through a purpose-built application (HopLabs, Atlanta, GA, US)
for acquiring the same dermoscopic image of a suspected lesion by
both devices, whichwere securely transmitted to a server (HopLabs, At-
lanta, GA, USA) via a mobile network. Participant ID was transferred as
consecutive numbers, without other patient details. Images were proc-
essed on the server by theDL algorithmand sonified. A clinical diagnosis
by the first DL classifier, benign or malignant, accompanied by the raw
sound appeared on the smartphone screen within 6–8 s from acquiring
the dermoscopic image.

Differences of image quality between both study dermoscopes
(Fig. 2a,b) can be quantified by applying a Fast Fourier Transformation
(FTT) to an image (Fig. 2c, d) which provides a view of its spatial fre-
quency components. The more distant the white areas are from the or-
igin of an FFT, the higher the spatial frequency. On the contrary, the low
frequency components are found near the central FFT image point. High
spatial frequencies are responsible for conveying the content of com-
plex real-world scenes in the scene-selective visual cortex [17]. These
high spatial frequencies correspond to features such as sharp edges
and fine details as opposed to the coarse estimate provided by the low
spatial frequencies which are less important in object recognition, an
analogy relevant to our image pattern recognition discrepancy in
image quality. Therefore, an increased white area corresponds to more
higher spatial frequencies and can be quantified as a geometric area.

Paired images of the same nevi (n = 12) were captured at an iden-
tical pixel content by both SMP and AD. Imageswere contrast enhanced
and a FFT (NIH ImageJ, v 1.51j8)was applied. FFT images of both devices
were further identically tresholded (Fig. 2e, f) and white areas were
measured. All FFT images were of the same pixel size and therefore
areas are expressed as area fractions. Comparison between
dermoscopes demonstrate that AD displays an area fraction of 43.8%
± 4.1 (median 43.8%) as compared to SMP 35.2% ± 5.9 (median
35.7%), p b .001, student's t-test. It is concluded that spatial frequencies
of devices diverge significantly, AD displaying higher spatial frequencies
and therefore rendering a more detailed image.

2.4. Outcomes

Primary outcomeof the sonification systemwasdefined as detection
of malignancies at a sensitivity of at least 85%, as validated by biopsy
(Sensitivity is the percentage of correctly diagnosed malignancies,
i.e., true positive/positive diagnoses). Sensitivity was chosen based on
data from an objective laboratory study [4], which represents and sim-
ulates clinician accuracy in detecting melanoma. This study dermatolo-
gists diagnosed “easy to recognize” melanoma correctly in
dermoscopies at a 72% ± 11 sensitivity, with sensitivity dropping to
34% for “intermediate” difficulties. Thus, we aligned our sonification
sensitivity criteria to the more severe criteria of 75% + 1 SD endpoint.
A second primary outcome was a specificity of at least 33% for
sonification, as compared to biopsy (specificity is the percentage of cor-
rectly identified normal nevi, i.e., true negative/negative diagnoses).
Specificity metric was derived from a clinical field test study results of
an electrical impedance device at 34% [18].

2.5. Statistical analysis

Baseline and demographic characteristicswere summarized by stan-
dard descriptive summaries. All statistical tests used in this study
(SigmaPlot v10.0, Systat Software, SanJose, CA) were 2-sided and a p
value b.05was considered significant. ROC curveswere used to compare
theDL results to ground truth biopsies. Sensitivity, the true positive rate,
was plotted on the y-axis versus [1-Specificity], the false positive rate,
on the x-axis of ROC curves. AUC for such a plot has a maximum value
of 1.0, and is a standard performancemetric in themachine learning lit-
erature. Accuracy of the ROC is defined as the fraction of correct predic-
tions, i.e. true positives and true negatives divided by all true and false
positives and negatives.

After measuring the sensitivity and specificity of the trained deep
learning model in 21 different settings, we selected the best operating
configurationusingF-score, a statistical analysismeasure for binary clas-
sification. F measure, a weighted harmonic mean of recall & precision
was used in order to assign a differential clinical significance to sensitiv-
ity andpositive predictive scores. F-score relies on recall (i.e., sensitivity)
and precision (positive predictive value) to calculate a unified score. It is
calculatedas follows: F(β)=(1+β2)·(Precision·Recall/(β2Precision+
Recall)),whereβ is a factor denoting how important recall is in compar-
ison to precision. Since in a clinical setting recall is more important than
precision (i.e., we allocate more importance to not missing a malignant
classification, at the cost of higher false positives), we selected a β of 2
(typical values are 1/4, 1/2, 1, 2, 4) indicating that twice the weight is
given to recall as opposed to precision, roughly paralleling our definition
of primary outcomes.

A minimal clinical sample size of 22 patients for estimating sensitiv-
ity is required assuming a 0.40 proportion for clinician group (null hy-
pothesis), a DL sensitivity of 0.85, a statistical power of 0.80 and alpha
of 0.05 (Sigmaplot for Windows, V 10.0, Systat Software, San Jose, Ca,
USA). Idem, assuming a 0.10 proportion for clinician group, a DL sensi-
tivity of 0.33, a statistical power of 0.80 and alpha of 0.05 a sample
size of 58 patients is required for specificity measurement.

3. Results

Patients suspected of skin cancer, either carcinoma or melanoma,
performed 73 consecutive biopsies (Table 1). The classifier was trained
to diagnose by DL and output was further sonified as either malign or
benign, i.e. an excise or do not excise decision. Atypical nevi (a clinical
diagnosis) mimic small melanomas and therefore dysplastic nevi (a
histopathopathology diagnosis) were part of the biopsied lesions and
excise criteria as MM simulators. Patients' biopsy reports indicated 2
melanomas, one adult atypical Spitz nevus and a majority of dysplastic
nevi alongside 12 carcinomas.
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Fig. 4. ROC curve of raw sonified audio files derived from an elementary dermoscope.
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The images of the SMP are blurred at a close up examination as com-
pared to AD (Fig. 3a, b). Visualization of fine dermoscopic features, such
as dots and intricate networks, is inadequatewhich renders a clinical di-
agnosis difficult.

Visual inspection of the raw sound files derived from SMP does not
distinguish between benign, dysplastic nevus andMM (Fig. 3 c). Conse-
quently, a secondary machine learning was applied to the raw sound
files in order to diagnose malignancy. The SMP ROC curve AUC (Fig. 4)
was 0.814 (95% CI, 0.798–0.831). Concomitant diagnosis of the same le-
sions by AD resulted in an AUC of 0.822 (95% CI, 0.849–0.794) (p=NS).
It is concluded that diagnostic output through a sonification algorithm is
not influenced by the quality of the dermoscope.

From a clinical perspective, the weights of recall (sensitivity) and
precision (positive predictive value) of a skin cancer are unequal,
since false negative diagnoses are more compulsory to be avoided.
Therefore, in line with the primary goals ratio, a 2:1 ratio weight was
assigned to recall versus precision. F2-score for both SMP and AD met-
rics were similar and non significant (Table 2). Specificity criteria, the
second primary outcome, was achieved by both SMP and AD. Specificity
of the advanced dermoscope seemed to be improved, but did not reach
a. Skin magnifier with polarized light 

b. Advanced dermoscope 

c. Raw audio   

    Benign Nevus         Dysplastic Nevus                     Melanoma 

Fig. 3. Comparison of benign nevus (left), dysplastic nevus (middle) and melanoma (right). A. Skin magnifier with polarized light acquires hazy out of focus images, without a clear-cut
pattern recognition offinedetails required for diagnosis. B. Same lesions images acquired by an advanceddermoscope exhibit clearfine features and edges enablingdiagnosis. C. Rawaudio
waves of a benign nevus, dysplastic nevus and melanoma, imperceptible to the human eye.



Table 2
Metrics of diagnostic analysis of elementary and advanced dermoscopes.

Metrics Skin magnifier with polarized light
(95% CI), %

Advanced dermoscope
(95% CI), %

p

Sensitivity (recall), TP/(TP + FN) 91.7
(85.7–97.6)

89.5
(82.5–96.4)

NS

Specificity 41.8
(27.5–56.1)

57.8
(44.0–71.6)

NS

Precision, TP/(TP + FP), positive predictive value 57.3
(49.7–64.9)

59.9
(51.4–68.4)

NS

F2-score (twice extra weight to recall over precision) 81.8
(78.4–85.3)

81.4
(77.2–85.7)

NS
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statistical significance (p = .13). Therefore, applying a F2-score clinical
criteria render dermoscope qualitywithout effect on diagnostic metrics.

4. Discussion

We report on skin cancer detection by an elementary dermoscopy
device which diagnosis malignancy utilizing DL and sonification algo-
rithms. Clinical outcome, as validated by histopathology reports, results
in a sound ROC AUC of 0.81. Applying a twice extra weight to sensitivity
upon positive predictive value derives a 92% sensitivity and a 42% spec-
ificity. Remarkably, diagnostic accuracy of the elementary dermoscope
is comparable to a professional dermoscopy device. Bearing in mind
that (i) The primary DL which outputs sonification was trained mostly
on highly detailed dermoscopy images, unlike this study elementary
dermoscope and that (ii) our elementary dermoscope quality output
does not allow a reliable diagnosis by a clinician, the results evidentiate
the difference of perception of visual images between humans and con-
voluted neural networks.

Prospective clinical studies of skin cancer detection by DL are scarce.
Publications up to date are laboratory initiated and do not account for
diagnosis of dysplastic nevi, an obligatory biopsy MM mimicker, there-
fore selectively concentrating on coarse MM features. Dysplastic nevi, a
histopathology diagnosis, are part of the atypical nevi spectrum which
they mimic and are diagnosed a posteriori. It is recommended to excise
only severe dysplastic nevi, and by some moderate dysplastic nevi as
well. However, (i) there is no a priori technology which can identify
whether a suspicious lesion is mild, moderate or severely dysplastic
and (ii) even pathologists are at dispute whether a nevus belongs to
the spectrum of moderate, severe or melanoma in situ, requesting a 3
panel experts for a final decision of about 15% of biopsies [19]. Further-
more, there is a 2% yield ofmelanomaof incompletely excisedmoderate
dysplastic nevi at 5 years of follow up [20], an inappropriate burden for
any healthcare system. Accordingly, our system does not seek to diag-
nose which kind of nevus the atypical suspect belongs to, but to recom-
mend whether to diagnose it as possible malign and recommend to
excise it or not. These study criteria of excision are more sensitive
than studies which diagnose exclusively MM, rendering a comparison
as impracticable. It is assumed that since sonification was able to detect
a dysplastic nevus, remarkable for a small size and high level
dermoscopic features, a melanoma diagnosis should be at least as feasi-
ble with its more prominent morphological characteristics. Indeed, his-
topathology reports identified 13 out of 16 pigmented lesions excised as
dysplastic nevi.

A biopsy validated study comparing between extreme poles of
dermoscopic devices, i.e. a SMP and AD, is unavailable. Evaluation of
our different visualization technologiesmight roughly parallel the com-
parison of a polarized noncontact dermoscope to a nonpolarized contact
dermoscope which results in a complementary output, i.e. a strong
agreement on pattern recognition, a mixed agreement, from weak to
strong, on structural elements and a weak agreement on colors [21].
Contrarily, our study demonstrates a similar diagnostic output for dif-
ferent visual clues provided by SMP and AD devices. Itmight be hypoth-
esized that DL diagnostics are more dependent on patterns and color
than on structural elements, alike blotches and blue-white veils. Re-
cently, DL was compared with humans for object recognition by apply-
ing a weaker visual signal such as a reduced contrast and additive noise
[22], a representation parallel to the downgrade in optical signal of SMP
as compared to AD. The authors concluded that the human visual sys-
tem ismore robust to imagemanipulations than DL by applyingweaker
signals. On the contrary, SMP of present study, a relatively weak signal
for human diagnostics, performed alike DL, a crisp visual signal. It
might be speculated that at a higher level and unlike human or even
DL processing, sonification and kmeans algorithms diagnose less by
identifying similarities to previous images and structural elements and
more by other means such as color recognition or even avoiding false
patterns. Sensitivity of DL is notable bearing in mind a limited 5000 im-
ages dataset our classifier was trained on.

Limitations to the study might include the assertion that SMP image
quality is on a diagnostic par with an advanced dermoscope. The likeli-
hood that SMP does procure a high quality image,which renders it close
to the AD, is not supported by the raw quality of the images which are
blurred and present fuzzy edges on high magnification, rendering diag-
nosis difficult. The study may encounter a random error due to a rela-
tively limited MM number of patients studied, but as referred, missing
anMM is unlikely due to a high sensitivity of the systemwhich includes
fine features dysplastic nevi. A selection bias, due to involvement of a
single dermatologist in clinical assessments might exist. Initial planning
which includes consecutive recruitment of patients, diagnosis at three
different sites and patients' inclusion into study exclusively after a
signed decision to biopsy lessen the impact of, to be further validated
by multicenter studies. The study is exposed to a confounding bias
due to a 15% disagreement between pathologists, and future studies
will validate its impact by applying a decision expert panel. Since all
missing data are limited at 10/83 (12%) of patients, it does not seem
to impact on the study results. As a first report of a computer-assisted
diagnostics systemwhich improves diagnostic accuracy of a low quality
dermoscope, our clinical datasets are limited and ensuing studies with a
higher patient number should handle realistic scenarios of technology
deployment.

In conclusion, a computer-assisted diagnostic rudimentary
dermoscope was tested whilst superimposing a sonification technique
on a convoluted neural network diagnostics. Technology improves ac-
curacy of skin cancer diagnosis and might assist physicians to diagnose
skin cancer and bypass dermoscopy-related experience factors, time
constraints, physical inconvenience of acquiring images and overcome
or, on the contrary, assist to a physician “God complex”. The study uti-
lized teledermatology and contributes to preventive medicine, poten-
tially supporting present budget oriented healthcare systems. Future
studies will include more substantial patient numbers and compare
human to sonification algorithms performance in order to verify and
upscale conclusions of this study.
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