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Abstract
Purpose Non-melanoma skin cancer (NMSC) is the most frequent keratinocyte-origin skin tumor. It is confirmed that der-
moscopy of NMSC confers a diagnostic advantage as compared to visual face-to-face assessment. COVID-19 restrictions 
diagnostics by telemedicine photos, which are analogous to visual inspection, displaced part of in-person visits. This study 
evaluated by a dual convolutional neural network (CNN) performance metrics in dermoscopic (DI) versus smartphone-
captured images (SI) and tested if artificial intelligence narrows the proclaimed gap in diagnostic accuracy.
Methods A CNN that receives a raw image and predicts malignancy, overlaid by a second independent CNN which processes 
a sonification (image-to-sound mapping) of the original image, were combined into a unified malignancy classifier. All images 
were histopathology-verified in a comparison between NMSC and benign skin lesions excised as suspected NMSCs. Study 
criteria outcomes were sensitivity and specificity for the unified output.
Results Images acquired by DI (n = 132 NMSC, n = 33 benign) were compared to SI (n = 170 NMSC, n = 28 benign). DI 
and SI analysis metrics resulted in an area under the curve (AUC) of the receiver operator characteristic curve of 0.911 and 
0.821, respectively. Accuracy was increased by DI (0.88; CI 81.9–92.4) as compared to SI (0.75; CI 68.1–80.6, p < 0.005). 
Sensitivity of DI was higher than SI (95.3%, CI 90.4–98.3 vs 75.3%, CI 68.1–81.6, p < 0.001), but not specificity (p = NS).
Conclusion Telemedicine use of smartphone images might result in a substantial decrease in diagnostic performance as 
compared to dermoscopy, which needs to be considered by both healthcare providers and patients.
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Introduction

About 5.4 million new Non-Melanoma Skin Cancers 
(NMSC), the most frequent skin cancer, are diagnosed 
each year in the US, in over 3.3 million subjects (Rogers 
et al. 2015). Mortality from cutaneous squamous-cell car-
cinoma is underreported and may approach mortality from 

malignant melanoma (Nehal and Bichakjian 2018). Basal 
cell cancer (BCC) and squamous cell carcinoma (SCC) are 
keratinocyte-derived skin cancers presenting with a BCC 
to SCC ratio of up to 4: 1. NMSC are non-melanocytic and 
non-pigmented in general, and therefore can be more dif-
ficult to diagnose than pigmented lesions. The number of 
biopsies required to diagnose a NMSC in the US ranges 
from 1:2 for dermatologists (Privalle et al. 2020) to 1:3 for 
advanced practice professionals (Nault et al. 2015). Simi-
larly, a large scale screening intervention program in Ger-
many indicated SCC and BCC lesion ratios needed to be 
biopsied to identify one NMSC was 1:4 for dermatologists 
and 1:9 for non-dermatologist physicians (Waldmann et al. 
2012).

The use of dermoscopy—the standard of care—by physi-
cians confers a diagnostic advantage for NMSC identification 
over visual inspection. A Cochrane review concluded that der-
moscopy increases sensitivity of NMSC diagnostics by 14% 
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over visual inspection (Dinnes et al. 2018). In another study 
with dermatologist raters, the sensitivity of NMSC diagnosis 
for BCC when using dermoscopy was 91%, which was 34% 
greater than when using close-up images; for SCC diagnosis, 
dermoscopic diagnosis sensitivity was 77%, which was 7% 
better than using close-up images (Tschandl et al. 2019). These 
levels of human performance leave room for improvement by a 
CNN usage in dermatology in to avoid unnecessary excisions 
or extended surgical interventions and possible disfigurement.

Due to COVID-19 restrictions on healthcare and a tendency 
to limit specialty clinic visits during the pandemic, telemedi-
cine monitoring has increased; this is potentially beneficial for 
patients, since it might improve early diagnostics. At present, 
a 3-month delay in treatment of NMSC is allowed (Baumann 
et al. 2020), although it is known that for about half of BCC 
lesions that do increase in size, the mean increase in area is 
about 8.3  mm2/month (Wehner et al. 2018). SCC metastasize 
in about 3.7% of patients (Schmults et al. 2013) and extran-
odal extension diagnostics by deep learning algorithms was 
suggested (Kann et al. 2020). Such algorithms integrated into 
a telehealth setting (Kuziemsky et al. 2019) are a feasible can-
didate for skin cancer screening and triage (Garg et al. 2018).

Previously, we have described a dual deep learning 
classifier by combining a sonification layer (visual data to 
sound conversion) and a visual analysis layer and which 
reports analytics by an interpretative audio signal, a semi-
supervised machine learning. This dual unified algorithm 
(DUA), a decision support tool for use of all physicians, 
improves accuracy of diagnosing skin cancer (Walker et al. 
2019) and assists in clinical decisions by conveying to the 
physician a dichotomous prediction of lesion etiology as 
either benign or malign. Such algorithms might be useful 
as a clinical support tool for distant location diagnostics 
and non- dermatologists. DUA performance was validated 
through a controlled prospective study (Topol 2019) in a 
clinical environment (Dascalu and David 2019). Since our 
training dataset included both dermoscopic images and 
close-up (non-dermoscopic) photos, it is a sensible next 
step to assess the accuracy of NMSC diagnostic outcomes 
with professional dermoscopic images and non-dermoscopic 
smartphone images as evaluated by our DUA. Understanding 
the usability and effectiveness of NMSC office- or home-
based diagnostics by CNN is highly relevant to the current 
environment, as different cancer detecting tools are being 
tested (Jeyaraj and Nadar 2019).

Methods

Primary deep learning training and sonification

As previously described14, a convolutional neural network 
architecture based on the Inception V2 network, a second 

generation CNN which uses batch normalization for clas-
sifying, was utilized. All images were validated by biopsy 
reports, classified into either malignant or benign and a fea-
ture representation was obtained. Publicly available datasets, 
such as the International Skin Imaging Collaboration (ISIC) 
2017 dataset (Codella et al. 2018) and the Interactive Atlas 
of Dermoscopy (IAD) dataset (Lio and Nghiem 2004) were 
used for training to a total of 4361 advanced dermoscope 
images and 800 non-dermoscopic regular photos. Data 
augmentation, training and fine tuning were performed as 
previously reported, and the weighted activations of all of 
the 1024 nodes in the penultimate layer of the DL classifier 
were sonified (Walker and Nees 2011). A K-means cluster-
ing algorithm (Celebi et al 2013) was employed to clus-
ter the activations into groups of related observations. The 
clustering solution with the lowest error (i.e. the one that 
maximizes the likelihood of the data) was chosen as the final 
model. Cluster centroids represented by individual pitches 
and malignant “alert” sounds were mapped onto loudness, 
timbre, and duration of a sonification, thus an audio signal 
for each of the centroids of data was derived, providing for 
an audio output that acoustically differentiated the malig-
nant from benign lesions and conferring information about 
the image through a raw wave file as previously described 
(Walker et al. 2019).

Unified dual deep learning algorithms

Our approach is based on a combination of two indepen-
dently deep learning models, which are then unified to train 
together at a unified threshold of 0.0101 (Fig. 1). The first 
deep learning model is a convolutional neural network that 
receives the raw image, and is trained to predict whether it is 
malignant or not. The second deep learning model is also a 
convolutional neural network which processes an audio file, 
which is obtained by performing sonification to the original 
image (in our previous works we demonstrated the benefit 
of sonification for this domain). Each image, either dermo-
scopic or smartphone, was processed by the same methodol-
ogy, i.e. by both a raw image classifier and independently by 
a sonification classifier.

To further improve the accuracy, we then combine the 
two models as follows: the output (prediction) layer of 
both deep learning models is removed, such that the prior 
layer is not the output layer. Two new fully connected 
layers are then added on top of the two models, such that 
the outputs of the two models are the inputs to the fully 
connected layers. A new softmax prediction layer is added 
to the fully connected layers, which provides the final 
unified prediction. Then, this entire unified structure is 
trained until convergence. Most of the training takes place 
in the fully connected layers, whereas the prior layers 
which are pretrained are only fine-tuned. The DUA takes 
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advantage of raw image and sonification algorithms dif-
ferential advantages in increasing specificity and sensitiv-
ity, correspondingly (Walker et al. 2019). The recommen-
dation of the unified system is dichotomous and relates to 
decision making, either an excise or do not excise, which 
conforms to a physician diagnostic decision and avoids 
mixing a specific diagnosis with pathological considera-
tions, as remarked for other oncologic areas of interest 
(Kann et al. 2020; Simon et al. 2020).

The unified output was applied on histopathology vali-
dated NMSC images of dermoscopic (Fig. 1a) or smart-
phone origin (Fig. 1b).

Datasets analysis

The dermoscopic images were captured by dermatolo-
gists or trained GPs by digital and smartphone camera and 
derived from two sources (Table 1), the Ham10000 data-
base (Tschandl et al. 2018) applying a 1:5 randomly selec-
tion (n = 149) and our previous prospective clinical study 
(Dascalu and David 2019) (clinicaltrials.gov Identifier: 
NCT03362138, n = 16). Both polarized and non-polarized 
dermoscopic images were included. Non-dermoscopic 
smartphone images, captured by different non-standardized 
smartphone devices (Table 1), were derived from a recently 

Fig. 1  Flowchart prediction process: a dermoscopy image is acquired 
by a smartphone and conveyed to cloud computing by a dedicated 
application. A deep learning classifier and audio classifier which were 
pre trained are combined and predict output findings. The final diag-

nosis is conferred to user as a malignant or benign lesion diagnosis, 
i.e. excise or not indication (a). See basal cell carcinoma outlook by a 
dermoscope (b) or as captured by a smartphone (c)
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published and biopsy-validated dataset (Pacheco et al. 2020) 
dedicated to NMSC at a 1:3 random selection (n = 159) and 
The Journal of Investigative Dermatology Editorial Images 
2018 (n = 39). Random selections were performed by using 
a Phyton script.

All dermoscopic and smartphone datasets were triaged 
by an expert dermatologist (AD) applying exclusion criteria 
identical to our previous prospective clinical study. Images 
displaying whole organ appearance, ink markings, more than 
15 hairs per field, scale bars extraneous to the capturing 
device, blurred images and photos less than 200 Kb (omit-
ted due to a marginal resolution conferred by low pixels, 
about 36% of omitted images) were excluded post selec-
tion. Exclusion rates were similar, i.e. 16.6% and 18.7%, 
for dermoscopic and non-dermoscopic images, respectively. 
Dermoscopic images of Ham and JID dataset did not include 
ethnicity details, precluding such comparisons between data-
sets. Seborrheic keratosis lesions with enough criteria to be 
excised as suspected NMSC were confined to the benign 
definition of the study. Actinic keratosis were not included 
because these lesions are a gray zone definition and a pre-
neoplastic entity. An unknown fraction of these lesions are 
treated by consensus before excision (cryotherapy, fluoro-
uracil use, etc.) resulting in distorted morphological fea-
tures such as hyper or hypo pigmentation and scarring of 
the lesion and therefore were omitted from this study due 
to the lack of criteria of excision (Dréno et al. 2014) or any 
documentation details in both databases. Dermatofibromas, 

vascular lesions, and pigmented nevi were not included due 
to their diagnostic obviousness or major pigmentary nature.

Outcomes

Primary outcome measures to compare between dermo-
scopic and non-dermoscopic techniques for measure by 
our AI algorithm score were sensitivity (sensitivity is the 
percentage of correctly diagnosed malignancies, i.e., true 
positive/positive diagnoses) and specificity (specificity is the 
percentage of correctly identified NMSC, i.e., true nega-
tive/negative diagnoses). Guidelines provided by Cochrane 
reviews which tested sensitivity and specificity at a fixed cut-
off point of 80% for both parameters were used to compare 
dermoscopy versus eye inspection. Since ROC curves are a 
continuous-scale display, a cut-off point is chosen to allow 
comparisons between different studies output, such as a typi-
cally fixed value of 80% for sensitivity or specificity. This 
framework of reference was used in the present study by our 
DUA which replaced the human component in diagnostics 
by either dermoscopy or visual inspection.

Statistical analysis

Baseline and demographic characteristics were summarized 
by standard descriptive summaries. All statistical tests used 
in this study were 2-sided and a p value < 0.05 was consid-
ered significant (SigmaPlot v10.0, Systat Software, SanJose, 

Table 1  Epidemiologic data and characteristics of lesions

Patient characteristics by age (p = 0.53, NS, student’s t test) and gender (p = 0.58, NS, Chi squared test) are without a difference

Dermoscopic images characteristics

Age, mean (range) 67.2 ± 12.3 
(31–87)

Sex
 Male 107
 Female 58

All images histopathology diagnosis 165
 BCC 96
 SCC 36
 Seborrheic Keratosis 33

Non-dermoscopic images characteristics

Age, mean (range) 66.3 ± 14.3 
(22–91)

Sex
 Male 134
 Female 64

All images histopathology diagnosis 198
 BCC 139
 SCC 31
 Seborrheic Keratosis 28
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CA). Diagnostics of methodologies were quantified by the 
area under the curve (AUC) of the receiver operating char-
acteristic curve (ROC) for the malignancy scores as com-
pared to ground truth. Sensitivity, the true positive rate, was 
plotted on the y-axis versus [1-Specificity], the false posi-
tive rate, on the x-axis of ROC curves. AUC for such a plot 
has a maximum value of 1.0, and is a standard performance 
metric in the machine learning literature. Negative Predic-
tive Value (NPV) are a metrics of true negative/(true nega-
tive + false negative) data and represent how likely it is for 
a normally tested subject to truly be healthy, in case of a 
negative test result. Accuracy of the ROC is defined as the 
fraction of correct predictions, i.e. true positives and true 
negatives divided by all true and false positives and nega-
tives. A confusion matrix was used to label the performance 
of our classification model on each of the dermoscopic and 
non-dermoscopic groups.

Results

Epidemiologic data and lesion characteristics of dermo-
scopic and smartphone photographs datasets of NMSC are 
specified in Table 1. Age and gender of the two groups were 
comparable between groups (p = 0.53, NS, student’s t test 
and p = 0.58, NS, Chi squared test, respectively). The histo-
pathology-validated images were analyzed by our DUA and 
a particular malignancy score was derived for each image. 
These malignancy score of the NMSC were parsed on a 
scale from 0–1 (1.0 was labeled as the highest malignancy 
score) and dermoscopic and smartphone datasets were fur-
ther depicted as a ROC curve.

ROC curve analytics of the dermoscopic dataset (Fig. 2a) 
indicated an AUC of 0.911 (95% CI 0.858–0.964). The ROC 
curve for smartphone-acquired dataset was further calcu-
lated (Fig. 2b) and resulted in an AUC of 0.821 (95% CI 
0.738–0.905). Both AUC’s are solid but the discriminative 
power and overall diagnostic accuracy of dermoscopic imag-
ing outperforms the smartphone diagnostics.

Data were further evaluated by a confusion matrix 
(Fig. 3) for both dermoscopic and smartphone images. A 
detailed classification discriminative measure was calculated 
as specified in Table 2 and various clinical decision metrics 
were compared between the dermoscopic and smartphone-
acquired methods (unpaired Student’s t test). Overall, the 
accuracy (i.e., correct predictions) of DI diagnostics (87.8%) 
was superior to SI diagnostics (74.8%; p < 0.005). Upon 
parsing the results, the DI diagnostics yielded a higher sen-
sitivity (95.5%) than SI images (75.3%; p < 0.001). Conse-
quently, the negative predictive value of the dermoscopic 
images outperformed the smartphone images (p < 0.001). 
The positive predictive values for both smartphone and der-
moscopy are adequate and at the highest range of a clini-
cal spectrum of accuracy (i.e., 90 + %). However, the low 
negative predictive values for the smartphone images reflect 
a missed NMSC in about 25% of lesions (42/170) which 
severely restricts its predictive value for any negative diag-
nosis of NMSC.

We further measured the outcome of NMSC evaluation 
by substituting AI assessment for human diagnostics. Crite-
ria similar to a recent Cochrane review were applied to our 
data, namely applying fixed cutoffs of 80% for either sensi-
tivity or specificity, and testing the outcome for the non-fixed 
parameter. NMSC diagnosis performance was predicted on 

Fig. 2  ROC curves of prediction sensitivity and specificity of the deep learning model for (a) dermoscopic images and (b) smartphone
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the relevant ROC curve as follows: (i) Postulating a fixed 
specificity of 80%, the sensitivity was 85% for dermoscopy 
versus 76% for smartphone (dermoscopy advantage =  + 9%); 
(ii) at a fixed sensitivity of 80% the specificity was 88% for 
dermoscopy and 69% for smartphone (dermoscopy advan-
tage =  + 19%). These figures are in concordance and close 
to human performance, which present a dermoscopy advan-
tage of + 14% for a fixed specificity and + 22% for a fixed 
sensitivity(Dinnes et al. 2018).

Discussion

A dual CNN was used to compare skin cancer diagnostics 
of dermoscopic versus smartphone camera images. It is 
demonstrated that DI are detected at a high sensitivity of 
95% and specificity of 58%, a PPV of 90% and a NPV of 
76%. Settling for SI, overall accuracy of the system drops 
by about 13%, sensitivity is 20% lower and NPV subsides 
at 32%. It was reviewed that dermoscopic visualization by 
human assessment outperforms clinical naked eye inspection 
in face to face encounters (Dinnes et al. 2018) and telehealth 

consultations (Ferrándiz et al. 2017). We conclude that a 
proclaimed gap in diagnostic accuracy between dermoscopy 
and clinical examination, as exemplified by smartphone 
images, is not narrowed down by use of CNN algorithms 
and therefore, use of a dermoscope substantially improves 
diagnostic accuracy with or without a CNN.

Skin cancer detection through telemedicine channels is in 
agreement with histopathology in about 70% of diagnoses 
by dermatologists (Giavina-Bianchi et al. 2020) and 50% by 
primary care physicians (Bridges et al. 2019). These moder-
ate performance levels leave room to further improvements, 
possibly by artificial intelligence-enhanced methods. The 
professional patient-oriented telemedicine diagnostics at 
present relies on a non-standardized smartphone camera to 
capture an image. Unsurprisingly, a recent review concluded 
that algorithm-based smartphone apps are currently non-
reliable (Freeman et al. 2020) and that test performance is 
expected to be poorer when applications are used in real life 
scenarios. Our study points to the image source as a place to 
start when seeking improvements in this domain.

Dermoscopic images are magnified by an achromatic 
lens ten-fold (10×) and include topographical details and 

Fig. 3  Confusion matrix for malignant versus benign lesions: a dermoscopic images; b smartphone images. Green represents the right prediction 
by model, red reads model was wrong

Table 2  Metrics of diagnostic 
analysis of images acquired 
through a dermoscopic lens 
versus smartphone

The values from Fig. 3 were used to derive data of this table
TP true positive, TN true negative, TP true positive, FP false positive

Metrics Dermoscopy
(95% CI), %

Smartphone photo
(95% CI), %

p

Sensitivity (recall), TP/(TP + FN) 95.5
(90.4–98.3)

75.3
(68.1–81.6)

p < 0.001

Specificity, TN/(TN + FP) 57.6
(39.2–74.5)

71.4
(51.3–86.8)

p = 0.28
NS

Precision, TP/(TP + FP), positive predic-
tive value

90.0
(85.8–93.1)

94.1
(89.9–96.7)

p = 0.73
NS

Negative predictive value
TN/(TN + FN)

76.0
(57.9 to 87.9)

32.3
(25.1–40.4)

p < 0.001

Accuracy
(TP + TN)/(TP + TN + FP + FN)

0.878
(81.9–92.4)

0.748
(68.1–80.6)

p < 0.005
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microstructures down to the level of papillary dermis, unlike 
macro or smartphone images of skin lesion. Notably, a der-
moscopic image is assessed by a limited and fixed number of 
dermoscopic patterns (Fargnoli et al. 2012). The improved 
diagnostics through the use of a dermoscope is not a straight-
forward conclusion since the human eye in both instances 
perceives a two dimensional image, which cannot be recon-
structed into a reliable 3-D topographical image by a human 
cortex. Distinctive colors and hues of lesions do not appear 
to make a large difference of NMSC identification, unlike 
melanoma, since image acquirement of lesions by both tech-
niques is colored and, in addition, specific color character-
istics are minor criteria of NMSC dermoscopy. This does 
not hinder human diagnostics by dermoscope, since human 
heuristics work by ignoring part of the information which 
leads to more accurate judgments than weighting and adding 
all information (Gerd and Gaissmaier 2011).

We demonstrated in the past that an increase in resolution 
by use of a high-end device is not a critical factor of improv-
ing sensitivity since both a professional high resolution and 
a rudimentary grade dermoscope possess, perhaps unexpect-
edly, the same sensitivity (Dascalu and David 2019) Similar 
to human heuristics—but by different mechanisms—CNNs 
improve specificity, but not sensitivity upon image capture 
by a higher-end device as compared to a low-resolution SI. It 
is assumed the rules of AI diagnostics are different and unre-
lated to human cognition-based diagnostics. The improved 
resolution of the dermoscope is secondary in enhancing 
diagnostics to the uncovering of sub-epidermal aspects of 
critical anatomical-pathological features conveyed by der-
moscopy. Therefore, our present study emphasize an essen-
tial dissimilarity in image features between dermoscopy and 
regular upper surface smartphone imaging as processed by 
a CNN.

Study limitations include a retrospective design and 
comparison between different groups of patients. An ideal 
design will prospectively assess the same patient by both 
dermoscopy and smartphone, and compare with histo-
pathological report. Although this setup is ideal, its physi-
cal implementation during the COVID-19 era is challeng-
ing, and based on the size and curation of both our testing 
arms of this study we assume such test results would not 
differ materially from the present study. A ratio of 5–7 
NMSC to benign lesions was derived due to the interre-
lated content of the employed databases, and an increase 
in sample size is not expected to change these ratios. Due 
to a high variability of the specificity data of our sam-
ple, DI and SI specificity comparisons are precluded. 
Present article is relevant to sensitivity of detection of 
NMSC, and less to an evaluation of a larger spectrum of 
lesions, such as vascular structures, skin benign tumors 
and actinic keratosis. An additional limitation is the com-
parison of NMSC versus benign seborrheic keratosis with 

dermoscopic or visual features severe enough to require 
excision. We believe that by inclusion of only difficult-
to-diagnose benign lesions (Papageorgiou et al. 2018), 
the safety of conclusions to be derived from the study 
is increased. This is a scientifically conservative design 
which trades an increase in overall sensitivity by the inclu-
sion of obvious vascular or pigmented lesions to a more 
robust and real life outcomes. Finally, we included only 
lesions that were subjected to excision, solely, to increase 
accuracy. Consequently, our study is prone to confirmation 
bias, which leads to possible overrepresentation of benign 
lesions that are difficult to diagnose. To prevent confir-
mation bias, inclusion of lesions without ground truth is 
required, affecting accurate diagnostics, which we avoided.

In conclusion, a CNN employing combined visual 
and sonification algorithms was tested to identify NMSC 
amongst a set of difficult to diagnose lesions. Results indi-
cate that CNN assessment of dermoscopic images improves 
NMSC diagnostics as compared to smartphone imaging, 
emphasizing the advantage of dermoscopy over smartphone 
image-based telemedicine. The use of CNN analytics does 
not close the already known gap in face-to-face diagnos-
tic accuracy between dermoscopy and smartphone photos, 
which seems to be constitutional to the skin layer analyzed 
by the classifiers. Physicians and patients should be aware 
of a possible decrease in sensitivity whenever diagnosing by 
non-standardized smartphone teledermatology.
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